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Abstract 22 

Data from environmental DNA (eDNA) may revolutionize environmental monitoring and 23 

management, providing increased detection sensitivity at reduced cost and survey effort. 24 

However, eDNA data are rarely used in decision-making contexts, mainly due to uncertainty 25 

around (1) data interpretation and (2) whether and how molecular tools dovetail with existing 26 

management efforts. We address these challenges by jointly modeling eDNA detection via qPCR 27 

and traditional trap data to estimate the density of invasive European green crab (Carcinus 28 

maenas), a species where, historically, baited traps have been used for both detection and 29 

control. Our analytical framework simultaneously quantifies uncertainty in both detection 30 

methods and provides a robust way of integrating different data streams into management 31 

processes. Moreover, the joint model makes clear the marginal information benefit of adding 32 

eDNA (or any other) additional data type to an existing monitoring program, offering a path to 33 

optimizing sampling efforts for species of management interest. Here, we document green crab 34 

eDNA beyond the previously known invasion front and find the value of eDNA data 35 

dramatically increases with low population densities and low traditional sampling effort, as is 36 

often the case at leading-edge locations. We also highlight the detection limits of the molecular 37 

assay used in this study, as well as scenarios under which eDNA sampling is unlikely to improve 38 

existing management efforts. 39 
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Introduction 44 

Since the first documented use of environmental DNA (eDNA) methods for detecting 45 

macro-organisms (Ficetola et al., 2008), the fields of conservation and ecology have seen a wave 46 

of eDNA studies, with wide ranging applications across a myriad of ecosystems and target taxa 47 

(Beng & Corlett, 2020; Bohmann et al., 2014; Deiner et al., 2017; Thomsen & Willerslev, 2015). 48 

Techniques such as quantitative polymerase chain reaction (qPCR), digital droplet PCR 49 

(ddPCR), and high throughput sequencing (HTS) are increasingly accessible, and can often 50 

detect trace amounts of DNA in environmental samples (Jerde, 2019). These molecular 51 

techniques yield high-resolution biological information and are particularly useful where 52 

traditional monitoring may be infeasible, labor-intensive, or reliant upon diminishing taxonomic 53 

expertise (Kelly et al., 2014); in some cases, eDNA assays are more sensitive than traditional 54 

sampling methods in detecting rare individuals (Goldberg et al., 2013; Jerde et al., 2011). 55 

Together, these attributes make eDNA sampling attractive for detecting rare, cryptic, or elusive 56 

aquatic species – and in particular, invasive species.  57 

Early detection and monitoring are key components of successful invasive species 58 

management strategies (Lodge et al., 2006), and detection at early stages of establishment has led 59 

to eradications of nascent invasions (Anderson, 2005; Wimbush et al., 2009). However, the effort 60 

required to detect a species is inversely proportional to its population size (Hayes et al., 2005), 61 

and so invasion fronts present a particular management challenge. Historically, cost-effective 62 

management strategies have had to balance high survey costs for small populations and high 63 

eradication costs if the survey fails to detect an incipient population in the initial stages of 64 

invasion (Lodge et al., 2006). Genetic approaches may better detect rare individuals, and thereby 65 

lower costs and improve the sensitivity of surveys for small populations, such as those at 66 
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invasion fronts (Beauclerc et al., 2019; Harper et al., 2018; Jo et al., 2021; Kuehne et al., 2020; 67 

Schütz et al., 2020). However, traditional monitoring methods outperform some eDNA assays 68 

(Rose et al., 2019; Ulibarri et al., 2017), underscoring the importance of side-by-side 69 

comparisons of detection efficiency.  70 

Despite the advantages of eDNA for early detection of small populations, few examples 71 

exist of eDNA methods used to guide decision making. Notable exceptions include the United 72 

Kingdom’s acceptance of eDNA qPCR results as evidence for the presence of the protected great 73 

crested newt, Triturus cristatus; there, developers can be prohibited from developing wetlands 74 

where there have been positive eDNA detections (Biggs et al., 2015; Natural England, 2017). 75 

Perhaps the best example of management-relevant eDNA surveys focuses on the invasive 76 

bighead and silver carps (Hypophthalmichthys spp.; often referred to jointly in the United States 77 

as “bigheaded carp”) (Mize et al., 2019), for U.S. Fish and Wildlife Service (Woldt et al., 2020) 78 

and U.S. Department of Agriculture (Carim et al., 2016) have protocols that guide field and 79 

laboratory eDNA methods, as well as outline recommendations for sampling plans and schedules 80 

to be implemented by regional sampling agencies. 81 

Typically, however, methodological development outpaces systematic plans for how to 82 

use DNA evidence to support management decisions. Consequently, managers have been slow to 83 

adopt eDNA-based approaches in decision making frameworks, (Bohmann et al., 2014; Darling 84 

& Mahon, 2011) due to gaps in understanding of the dynamics of eDNA in space and time, as 85 

well as the susceptibility of eDNA methods to false negative detections and false positive 86 

detections (Darling et al., 2021; Goldberg et al., 2016; O’Donnell et al., 2017; Sepulveda et al., 87 

2020). Although all sampling methods have potential errors, there are many mechanisms for 88 

eDNA methods to indicate a false presence, and the fear of a false positive detection is cited as 89 
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the primary obstacle to adopting eDNA-based methods in species monitoring (Jerde, 2019). Even 90 

though emerging statistical approaches aim to estimate the probability of false positive error 91 

(Griffin et al., 2019; Guillera-Arroita et al., 2017), clearly communicating of the meaning of 92 

false positive errors – and more generally, uncertainty surrounding the meaning of results – to 93 

managers and the public remains challenging (Darling et al., 2021).  94 

Previous reviews highlight the “potential” of eDNA methods to dramatically improve 95 

biodiversity assessments and targeted detection of species of concern, as well as the “potential” 96 

for unreliability and augmenting of existing uncertainty in environmental management and 97 

assessment (Beng & Corlett, 2020; Bohmann et al., 2014; Darling & Mahon, 2011; Yoccoz, 98 

2012). Moving from evaluating the potential value of eDNA data to the practical value of eDNA 99 

data requires quantitative and meaningful interpretations of available data (Cristescu & Hebert, 100 

2018; Lacoursière‐Roussel & Deiner, 2021), as well as demonstrating the ways in which eDNA 101 

does – or does not – complement existing management strategies.   102 

Recent work significantly advances eDNA data interpretation by extending site 103 

occupancy modeling methods to estimate species presence and absence using eDNA data 104 

(Schmidt et al., 2013). Such models account for imperfect detection when inferring species 105 

occupancy and can overcome bias introduced by false negative and false positive detections 106 

(Hunter et al., 2015; Lahoz-Monfort et al., 2016; Schmelzle & Kinziger, 2016). Occupancy 107 

estimation has become a standard method for modeling species dynamics, monitoring species 108 

trends, and informing management (MacKenzie et al., 2002, 2003). The approach has been 109 

adapted to accommodate violations of model assumptions (Lele et al., 2012) and survey 110 

scenarios where multiple types of observational error occur (McClintock et al., 2010; Miller et 111 

al., 2011).   112 
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Occupancy models suggest that there are two classes of sites, those that are occupied and 113 

those that are not, and these models assume no unmodelled heterogeneity among sites in the 114 

probability of detecting a species at a site where it occurs (Royle and Nichols 2003; Altwegg & 115 

Nichols, 2019). In reality, variation in local abundance of the species between sites is one 116 

important factor that can induce heterogeneity in detection probability with ecological or genetic 117 

methods (Royle & Dorazio, 2008), resulting in low estimates of occupancy probability at sites 118 

where a species is present but rare. Even for a relatively sensitive assay, a low molecular 119 

detection rate can therefore reflect low abundance, rather than low probability of occupancy.  120 

Royle and Nichols (2003) aimed to overcome this limitation by describing a modeling 121 

approach that links heterogeneity in abundance to heterogeneity in detection probability, 122 

estimating abundance from repeated observations of a species. This heterogeneous detection 123 

probability model provides a framework for estimating species density based on abundance-124 

induced variation in detection probability with eDNA methods (Royle & Nichols, 2003). 125 

Building on this framework, we jointly model observations from both traditional and eDNA 126 

monitoring methods to estimate local species density. The joint model aids management 127 

decisions by informing interpretation of molecular detections, the most appropriate use of eDNA 128 

sampling efforts, and the relative sensitivities of molecular and traditional sampling methods.  129 

We apply the joint model to eDNA detection data of European green crab, Carcinus 130 

maenas, in Washington State. Green crab causes massive ecological and economic damage in its 131 

invaded range; for example, the species has caused the collapses of the soft-shell clam industry 132 

in Maine (Glude, 1955; Tan & Beal, 2015). Green crab was first detected in Washington waters 133 

in 1998, after warm El Niño-Southern Oscillation (ENSO) currents spread larvae of California 134 

populations up to British Columbia, Canada (Behrens Yamada & Hunt, 2000), and the species is 135 
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now classified as a deleterious species in Washington State because of perceived risks to coastal 136 

resources (Grason et al., 2018). Washington Department of Fish and Wildlife (WDFW), United 137 

States Fish and Wildlife Service (USFWS), Washington Sea Grant, several sovereign tribal 138 

nations, and other concerned citizens have subsequently coordinated to surveil and manage green 139 

crab along the nearly 3,000 km of Washington’s inland shoreline.  140 

Traditionally, crab traps have provided much of the quantitative information about the 141 

position of the green crab’s invasion front in Washington, and the State invests heavily in 142 

deploying traps throughout likely invasion pathways. Here, we couple this existing dataset with 143 

qPCR data using a recently developed assay for green crab (Roux et al., 2020), derived from 144 

water samples collected throughout the region. We combine these data streams to estimate the 145 

density of green crab across the study sites using the joint model, and we highlight changes in the 146 

precision of these estimates in the joint model vs. a model that uses only traditional trapping 147 

data; the difference between the two is the marginal information benefit of eDNA for this 148 

particular management purpose. This modeling framework offers a path to improve 149 

interpretation of eDNA data, as well as identify the scenarios under which eDNA sampling will 150 

most likely improve existing management efforts. 151 

 152 

Methods 153 

i. Joint model description 154 

We model traditional trap data and eDNA qPCR detections jointly, linking the two 155 

through a shared species density at each sampling site (Data S1).  156 

Traditional monitoring methods – here, trapping – relate repeated capture rates to an 157 

underlying species density. Since previous work analyzing green crab capture in traps found 158 
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patchy distribution, with significant local-scale variation within a site (Bergshoeff et al., 2019), 159 

we modeled the capture process using a negative binomial distribution to account for 160 

overdispersion. We also conducted a leave-one-out cross-validation approach to evaluate the 161 

relative predictive accuracy of distribution choices for modeling the capture process based on the 162 

observed data (Vehtari et al., 2017) (Appendix S1, Data S2). The observed count, Y, of a species 163 

at site i and trap sample k is drawn from a negative binomial distribution with a mean species 164 

density, µi, and an overdispersion parameter, Φ (Eq. 1).  165 

   166 

 ( ), ,~  µi k iY NegBinomial    (1) 167 

 168 

Guided by the principle that the probability of detection with qPCR increases as the 169 

underlying species density increases, we describe the probability of a true molecular detection, 170 

p11, at site i as a saturating function of species density, µi, and scaling coefficient, β (Eq. 2). 171 

 172 
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 174 

Recognizing the susceptibility of eDNA methods to false positive errors (Roussel et al., 175 

2015; Sepulveda, Nelson, et al., 2020), we incorporate a false positive probability, p10, that 176 

represents two sources of false positive detections: (1) presence of target DNA in the sample but 177 

absence of target organism at the associated site, arising from processes like laboratory 178 

contamination or transportation of target cells from far away locations, and (2) absence of target 179 

DNA in the sample but a positive molecular detection, arising from non-specific amplification. 180 
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The false positive probability, p10, contributes to the overall molecular detection probability, p, at 181 

site i (Eq. 3; p is bounded between 0 and 1).  182 

 183 

 10 11,  i ip p p= +   (3) 184 

 185 

We estimate these parameters through repeated molecular observations at each site using 186 

a species-specific quantitative PCR (qPCR) assay (Roux et al., 2020). Many applications of 187 

qPCR are interpreted as molecular binary indicators of detection (1) or nondetection (0) 188 

(Guillera-Arroita et al., 2017; Orzechowski et al., 2019; Schmidt et al., 2013), and the binomial 189 

distribution is suitable for modeling “successes” in a given number of trials (Hobbs & Hooten, 190 

2015). The number of positive qPCR detections, K, out of the number of trials, N, in water 191 

sample j at site i is drawn from a binomial distribution, with a probability of success on a single 192 

trial, pi (Eq. 4). Due to the hierarchical qPCR data structure, where qPCR triplicates are nested 193 

within water bottles within sites, we also provide a hierarchical version of the model that 194 

accounts for membership of qPCR replicates within nested groups (Appendix S2, Data S3). We 195 

present a simpler model here.  196 

 197 

 ( ), ,~  ,  i j i j iK Binomial N p   (4) 198 

 199 

We implement the model in a Bayesian framework, in which the posterior probability of 200 

the model parameters (given observed data) is product of the individual likelihood functions at 201 

site, i, water sample, j, and trap sample, k, as well as the prior probabilities (Eq. 5). A gamma 202 

distribution was used as the prior distribution for parameters µi, Φ, and β because of its 203 
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suitability for continuous, non-negative random variables. These priors allow us to incorporate 204 

existing information into the analysis and help to make the parameters identifiable.  205 

 206 
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   208 

We specified the model within Stan, a probabilistic programming language written in 209 

C++ that implements full Bayesian statistical inference using Markov chain Monte Carlo, and 210 

used the package ‘rstan’ (version 2.21.2) as an interface to the R (version 4.1.1) software 211 

environment (Carpenter et al., 2017; Guo et al., 2020; R Development Core Team, 2021). 212 

 213 

ii. Green crab eDNA data collection 214 

eDNA field sampling 215 

Twenty sites with varying known presence and abundance of green crab were chosen for 216 

eDNA sampling (Figure 1, Appendix S3: Figure S1), and given the time scale of the sampling 217 

effort, all sites were distinct with relation to green crab movement. At each site we collected five 218 

500 mL surface water samples 1-5 meters apart. All sampling equipment was soaked in 10% 219 

bleach between sites and thoroughly rinsed in deionized water to prevent cross-contamination. 220 

Water samples were placed on ice and vacuum-filtered onto a cellulose acetate filter (47 mm 221 

diameter, 0.45 µm pore size) within four hours of collection, except for samples from the KVI 222 

site, where samples were stored at 4°C and filtered 24 hours after collection due to vacuum 223 

equipment malfunction. Filters were preserved in 900 µL of Longmire buffer (Longmire et al., 224 
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1997; Renshaw et al., 2015) and stored at -80°C for 1-3 weeks before DNA extraction. We 225 

collected a total of 100 eDNA water samples. 226 

 227 

eDNA sample processing 228 

We extracted DNA from filters using a phenol:chloroform:isoamyl alcohol protocol 229 

(modified from (Renshaw et al., 2015) and described in (Gallego et al., 2020)). One negative 230 

control (900 µL of Longmire buffer) was extracted during each set of DNA extractions (n = 3 231 

total). We quantified DNA purity on a spectrophotometer (Nanodrop, Thermo Scientific, Inc.) 232 

and DNA concentration on a fluorometer (Qubit, Invitrogen, Inc.) to determine DNA extraction 233 

success. 234 

Each eDNA extract was amplified by qPCR using a C. maenas-specific assay developed 235 

by Roux et al. (2020) that targets a 148 bp fragment of the cytochrome c oxidase 1 (CO1) region. 236 

Three qPCR replicates were run for each eDNA extract in 25 µL reactions following Roux et al. 237 

(2020), but we modified the protocol to use TaqPath™ ProAmp™ Master Mix due to its 238 

relatively high tolerance of inhibitors (Applied Biosystems, A30865). Three negative PCR 239 

controls containing 2 µL of molecular grade water were included in each reaction, and each 240 

extraction negative control was run in triplicate. All qPCR reactions were performed on Applied 241 

Biosystems StepOnePlus Real-Time PCR System an analyzed with StepOne Software v2.3. Any 242 

DNA template passing the fluorescence threshold in fewer than 38 cycles was considered a 243 

positive amplification, since 38 Ct is the average Ct value corresponding to the assay’s limit of 244 

detection with 50% chance of detection (Roux et al., 2020). The identity of 13 qPCR products 245 

from four sites were confirmed through unidirectional Sanger sequencing with the forward 246 
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primer; all sequences were unambiguously C. maenas, and no other crabs from the same 247 

taxonomic family are present in the region (Appendix S4: Table S1).  248 

In addition to the 20 sites sampled concurrently with trapping efforts, eDNA samples 249 

from seven sites in Skagit Bay, WA were analyzed using the same sampling, DNA extraction, 250 

and qPCR procedures (Appendix S4: Table S2). These sites were characterized as unsuitable for 251 

green crab based on expert opinion and were included as sites of unambiguous crab absence to 252 

inform the prior on the estimated probability of a false positive molecular detection (p10). Four 253 

water samples at each of the seven sites were processed at an independent laboratory facility 254 

(NOAA Northwest Fisheries Science Center), where each water sample underwent triplicate 255 

qPCR reactions, alongside nine no-template negative controls and three field blank negative 256 

controls. 257 

 258 

Inhibition Testing 259 

To ensure negative qPCR detections were not systematically due to PCR inhibition, we 260 

measured potential inhibition occurrence by analyzing the quantification threshold (Ct) deviation 261 

of a spiked internal positive control. A synthetic (gBlock) positive control was spiked into 262 

samples with no positive amplifications (Integrated DNA Technologies, Inc.). The double-263 

stranded 200 bp gBlock oligonucleotide contained green crab-specific primer and probe 264 

sequences, with three modified bases between the forward primer and probe and two modified 265 

bases between the probe and reverse primer to identify contamination at the amplification step. 266 

For sites where all eDNA replicates previously tested negative for green crab, we subsequently 267 

tested one eDNA sample per site for inhibition. For sites where some but not all eDNA replicates 268 

tested negative for green crab, each previously negative eDNA sample was tested for inhibition. 269 
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Each qPCR reaction used 1 µL of environmental DNA extract and 1 µL of the gBlock positive 270 

control at a final reaction concentration of 0.20 gBlock copies/µL. Three qPCR replicates 271 

containing 1 µL of the gBlock positive control (without eDNA extract) at a final reaction 272 

concentration of 0.20 copies/µL was also included in the reaction. Inhibition occurrence was 273 

measured as the difference in Ct, Ct, between the Ct value of the spiked eDNA sample and the 274 

mean of the three positive gBlock controls (Ctsample – Ctcontrol) (Volkmann et al., 2007). We 275 

conservatively considered a Ct greater than two cycles to be evidence of inhibition, considering 276 

that three cycles – as is common in the literature (Hinlo et al., 2017) -- is almost one order of 277 

magnitude difference in concentration in an efficient reaction. Each DNA sample underwent 1-3 278 

passes through a OneStep PCR Inhibitor Removal spin column (Zymo Research Corp.) until 279 

inhibition occurrence was not detected (Appendix S4: Table S3).   280 

 281 

iii. Green crab trapping data 282 

The Washington State Department of Fish and Wildlife, Washington Sea Grant, U.S 283 

Department of Fish and Wildlife, and Jamestown S’Klallam Tribe provided data from baited 284 

traps from a larger green crab monitoring program. Traps were set for an overnight soak and 285 

collected within 24 hours of placement; any trapped green crabs were counted and subsequently 286 

removed from the system. Trap types included in the dataset were Gee-brand galvanized steel 287 

minnow trap (5.08 cm opening, 0.635 cm mesh) and the square Fukui fish trap (1.27 cm mesh), 288 

which have similar catchability for green crab and mechanisms of trapping.  289 

The sampling sites vary with respect to known green crab presence, abundance, and 290 

trapping effort (Appendix S3: Figure S1). Trapping effort ranged from three to 420 traps set over 291 

the selected trapping period, and water samples were collected two weeks before or after trap 292 
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collection, with the exception of the Stackpole site (STA) (Appendix S3: Figure S2). At STA, 293 

only three traps were set during the sampling period, and no green crabs were recovered. To 294 

reflect the relatively high density of green crab determined through previous, greater trapping 295 

efforts, trapping data at STA collected eight weeks before eDNA sampling were included in the 296 

dataset (Appendix S3: Figure S2). Despite trapped crabs being removed from the system, our 297 

analysis assumed that these removals did not substantially change the relative densities of green 298 

crab at the sampled sites over the sampling period (Appendix S3: Figure S2).  299 

 300 

iv. Joint model application: green crab density estimates 301 

We fit the joint model to the qPCR and trap observations using weakly informative priors 302 

for all parameters except the false positive rate of detection, p10, for which we used an 303 

informative prior from negative control data in Roux et al. (2020) and the eDNA samples from 304 

sites characterized a priori as unsuitable for green crab. We set the p10 prior at beta(1,28), such 305 

that the false positive detection probability is likely less than 0.036 (P(p10 < 0.036) = 0.64). For 306 

ease of model-fitting in Stan, we moved p10 to a log scale, and used moment-matching to convert 307 

the beta prior into a lognormal distribution (Hobbs & Hooten, 2015). To reflect prior knowledge 308 

of the presence of green crab at each site beyond the information provided in the trap data, 309 

different hyperparameters were used for the prior distributions for µ based on green crab 310 

recovery at the sampled sites from 2017-2021 (Appendix S4: Table S2). The prior distribution 311 

for µ at sites with a history of trapped green crab was µcrab ~ gamma(0.25, 0.25), and the prior 312 

distribution for µ at sites without a history of trapped green crab was µnocrab ~ gamma(0.05, 0.05). 313 

Priors for the other model parameters were as follows: β ~ gamma(2, 1) and Φ ~ gamma(0.25, 314 

0.25). 315 
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We ran the joint model via ‘rstan’, with a step size of 0.5 and 4 chains with 500 warm-up 316 

and 2,500 sampling iterations per chain, and we checked for model convergence through the R-317 

hat convergence diagnostic and by visually examining the resulting autocorrelation plots and 318 

chain mixture in the trace plots using the package ‘shinystan’ (Gabry et al., 2018). For 319 

comparison, we ran a trap-only model (Eq. 1) in the same way. 320 

As crab density decreases, the probability of a true positive molecular detection 321 

decreases, and at very low crab densities, the probability of a false positive detection, p10, is 322 

higher than the associated true positive detection, p11. Here, we defined the crab density 323 

threshold at which a detection is equally likely to be true or false (p10 = p11) as the critical crab 324 

density, µcritical. This value was calculated using the model’s posterior distributions of estimated 325 

parameters, p10 and β, and the relationship between µ and p11 defined in Eq. 2. 326 

 327 

v. Robustness Assessments 328 

A sensitivity analysis was conducted to ascertain the sensitivity of the model’s inferences 329 

to the specification of the false positive probability, p10, prior distribution. The joint model was 330 

refit using a set value for p10 under a range of values (0.005-0.055), and all other parameters (β, 331 

Φ, µi) were estimated. All refitted models were run with a step size of 0.5 and 4 chains with 500 332 

warm-up and 2,500 sampling iterations per chain and were checked for model convergence.  333 

We also examined the effect priors had on our inferences by conducting a data cloning 334 

procedure described by Lele et al. using the package ‘dclone’ (version 2.3-0) (Data S1) (Lele et 335 

al., 2007; Solymos, 2019). We replicated the qPCR and trapping datasets (n = 10) for each 336 

sampled site and used these copies as data input in our model to swamp the posterior 337 

distribution, which subsequently minimizes the influence of the prior distributions and yields 338 
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estimator outputs that are asymptotically equivalent to maximum likelihood estimators (Lele et 339 

al., 2007). We evaluated the influence of the prior distributions on our model’s inferences by 340 

comparing data cloning parameter estimates to our Bayesian parameter estimates. 341 

We then compared our model’s inferences to parameter estimates derived from an 342 

occupancy modeling framework. We estimated occupancy parameters using the qPCR detection 343 

data and the R package, ‘msocc’ (version 1.1.0), which implements a Gibbs sampler to fit 344 

Bayesian multi-scale occupancy models (Data S1) (Stratton et al., 2020). The occupancy model 345 

was run with 11000 total MCMC iterations (1000 burn-in iterations), and site-specific sample-346 

level probabilities of occupancy, θi, and site-specific replicate-level probabilities of occupancy, 347 

pi, were estimated. Replicate-level probabilities of occupancy, pi,occupancy, were compared to the 348 

overall probabilities of molecular detection, pi,joint, from the joint model, and a linear regression 349 

was fit to model the relationship between pi,occupancy and pi,joint using the lm() function in R. 350 

 351 

vi. Evaluation of eDNA data’s marginal benefit 352 

As information increases, uncertainty decreases. We therefore considered a reduction in 353 

uncertainty around green crab density estimates as a measure of the marginal value of eDNA 354 

data, relative to the baseline information contained in trap data alone. We quantified precision in 355 

the estimates of green crab density, µi, using a coefficient of variation (CV; the standard 356 

deviation of the parameter estimate divided by the mean), to facilitate comparisons of variability 357 

across green crab densities of differing orders of magnitude (Abdi, 2010). We calculated the 358 

change in precision (CV) in the parameter estimates in the joint model vs. trap-only model as 359 

CVtrap – CVjoint, and we analyzed this change in precision as a function of trapping effort. qPCR 360 
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effort remained constant throughout data collection. We captured the resulting exponential trend 361 

line in the relationship between CV and trapping effort using the method of least squares. 362 

To evaluate the sensitivity of eDNA vs. trap sampling, we estimated the sampling effort 363 

necessary to detect a green crab with 90% confidence. A detection refers to either capturing at 364 

least one green crab in a trap or producing at least one true positive qPCR amplification. For trap 365 

sampling, we calculated the minimum number of traps necessary to be 90% confident that at 366 

least one crab would be caught (Eq. 1, given a non-zero expected number of crabs/trap, µ, and 367 

the model’s median estimate for dispersion parameter, Φ). For eDNA sampling, we defined 368 

effort as the number of unique water samples, each having triplicate qPCR. We calculated the 369 

minimum number of water samples, E, necessary to detect the true presence of crab with at least 370 

90% confidence as binomial(E*N, p11), where N=3. p11 was defined as in Eq. 2 and depends 371 

upon the underlying true number of crabs/trap, µ, and the model’s median estimate for parameter 372 

β. Both sampling type analyses were conducted under a range of crab densities, from median 373 

µcritical – 3.0 crabs/trap. 374 

 375 

vii. Simulation study 376 

We simulated the precision and accuracy of green crab density estimates as a function of 377 

sampling strategy, given a range of green crab trapping efforts and true species densities. Both 378 

qPCR data and green crab trap count data were simulated for each of nine green crab densities 379 

(0, 0.02, 0.05, 0.1, 0.15, 0.25, 0.5, 1, 3 crabs/trap (µsim)) and eleven trapping efforts (3, 4, 5, 7, 380 

10, 12, 15, 20, 30, 40, 60 traps), for a total of 99 scenarios. The eDNA sampling effort was held 381 

constant at five biological replicates and three technical replicates for all simulated scenarios. 382 

Each scenario made up a different site, isim, in the overall simulated dataset, and we simulated 383 
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each dataset 50 times to capture stochasticity. These scenarios represented the range of green 384 

crab densities and trapping efforts observed in this study.  385 

We then used the simulated datasets to estimate the underlying green crab density, µsim, at 386 

each simulated site, isim, with both the joint and trap-only models. Only parameter µsim for each 387 

simulated site was estimated by the two models, and parameters p10, β, and Φ were set at the 388 

joint model’s median estimate derived from collected data. A prior distribution for µ of 389 

gamma(0.05, 0.05) was used at all simulated sites, and each model was run with 4 chains of 500 390 

warm-up iterations and 2,500 sampling iterations (Data S4). We calculated the mean change in 391 

precision (CV) of the 50 simulation replicates at each simulated site to determine the effect of 392 

trapping effort and underlying crab density on changes in estimated crab density precision. We 393 

calculated model accuracy for each simulation scenario as the proportion of simulation replicates 394 

that yielded a 90% credibility interval containing the true density, µsim.  395 

   396 

Results 397 

i. Green crab genetic and traditional monitoring data collection 398 

We detected at least one positive amplification at 13 sites, (1 – 15 amplifications out of 399 

15 total qPCR replicates per site; five biological replicates x three technical replicates per site; 400 

Appendix S4: Table S3). In a total of 1274 trap observations (3 - 420 traps set over the sampling 401 

period; Appendix S3: Figure S2), green crabs were trapped at nine of the 20 sampled sites over 402 

the sampling period (mean crabs/trap 0 – 6.04). All nine of these sites had positive eDNA 403 

detections, while four additional sites yielded at least one positive eDNA detection where no 404 

green crabs were trapped over the sampling period (Figure 1). At two of these four additional 405 

sites, green crabs were recovered in traps over a longer time horizon (2017-2021) than the extent 406 
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of the sampling period (Appendix S4: Table S2). All samples collected at sites characterized as 407 

unsuitable for green crab produced negative qPCR results, and all no-template (negative) qPCR 408 

controls and DNA extraction blanks produced negative qPCR results. 409 

 410 

ii. Detection of green crab eDNA beyond known invasion front 411 

Both the joint and trap-only models yielded an R-hat of one for all estimated parameters 412 

and produced well-mixed chains and low serial autocorrelation, indicating model convergence. 413 

The median calculated critical crab density, µcritical, or threshold where the true positive 414 

probability of molecular detection equals the false positive probability of molecular detection 415 

(p10 = p11) was 0.056 crabs/trap (0.010, 0.12 90%CrI). 416 

The joint model estimated a relatively high green crab density in a location beyond the 417 

previously known invasion front (Figure 2) and provided well-constrained estimates of 418 

parameter values, including the false positive rate (p10 = 0.022, (0.0095, 0.048 90%CrI); Table 419 

1). Green crab eDNA was detected on Vashon Island, more than 60 km south of the 420 

southernmost visual observations of the species (Figure 2). The median estimated green crab 421 

density at the Raab’s Lagoon (RAA) site on Vashon Island was 0.16 crabs/trap (4.0e-61, 0.61 422 

90%CrI) (Figure 3, Appendix S4: Table S4). The probability that the green crab density at 423 

Raab’s Lagoon (RAA) was greater than the median µcritical, 0.056 crabs/trap, was 0.64. This 424 

relatively high density of green crab was similar to density estimates at sites in Whatcom region, 425 

where historically green crabs have been recovered in traps under high trapping efforts 426 

(estimated densities 0.065 – 0.59 crabs/trap, Appendix S4: Table S4).  427 

The concurrent eDNA and trap sampling meaningfully constrained the lower limit of 428 

eDNA sampling’s sensitivity relative to trap sampling. At Graveyard Spit Channel, the eDNA 429 
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samples yielded no positive molecular detections, and no green crabs were trapped out of the 86 430 

traps set during the sampling period. The estimated median green crab density at this site was 431 

low (0.00049 crabs/trap; 2.4e-18, 0.0079 90%CrI). However, in 2020, 1369 traps were set, and 432 

three green crabs were recovered (0.002 crabs/trap), and in April 2021, three more crabs were 433 

recovered at this site, indicating that it is nearly certain that crabs were present in the channel 434 

during the time of sampling but not detected by eDNA sampling; this appears to be a false 435 

negative result. 436 

 Three sampled sites—Indian Island (IND), Jimmycomelately creek (JIM), and KVI 437 

Beach (KVI)—yielded one positive molecular detection, yet their median estimated crab 438 

densities were below µcritical, or the crab density at which the false positive probability of 439 

detection equals the true positive probability of detection, given the estimated crab density 440 

(Appendix S4: Table S4). The probability that the crab densities were greater than the median 441 

µcritical was 0.35, 0.017, and 0.096 for IND, JIM, and KVI, respectively. Given the estimated crab 442 

densities at these sites, these molecular detections were as likely to be a false positive detection 443 

than a true positive detection. One sampled site, Jimmycomelately creek (JIM), in the Central 444 

Sound produced one positive qPCR detection, yet the 43 traps set over the sampling period 445 

recovered zero green crab individuals. During 2020, no green crabs were recovered in traps, but 446 

in July 2021, nine months after eDNA sampling, five adult green crabs were recovered in in a 447 

neighboring channel to the site sampled for eDNA.  448 

 449 

iii. Robustness Assessments 450 

The model refitting procedure using set values for the false positive probability p10 (p10 = 451 

0.05-0.55) indicated that some parameter estimates were sensitive to p10. Among the four sites 452 
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with at least one positive eDNA detection and no crabs trapped over the sampling period (RAA, 453 

IND, KVI, JIM), all four µ estimates were sensitive to the value set for p10 during model refitting 454 

(Appendix S3: Figure S3a, Figure S3c). At these sites, lower values of p10 yielded higher 455 

estimates of µ, and this effect was strongest for sites with a low trapping effort (RAA, IND, 456 

KVI) (Appendix S3: Figure S3a, Figure S3c). All other µ estimates at the remaining 16 sites 457 

were insensitive to the set value of p10 (Appendix S3: Figure S3d). As expected with a lower p10 458 

and subsequently a more sensitive assay, lower set values of p10 yielded lower estimates of the 459 

scaling parameter, β (Appendix S3: Figure S3b). 460 

For the data cloning procedure, all parameter maximum likelihood estimates were within 461 

the 90% credibility intervals estimated by the Bayesian model. The median maximum likelihood 462 

estimates of µ (µMLE) were nearly identical to the median Bayesian estimates of µ (µBayes), 463 

although the median µMLE was slightly higher than the median µBayes at sites with a lower 464 

trapping effort (Appendix S3: Figure S4). The median maximum likelihood estimate of Φ was 465 

0.96, which was nearly identical to the median Bayesian estimate of Φ (0.94) (Table 1). The 466 

median maximum likelihood estimate of β was 2.3, and the median maximum likelihood 467 

estimate of p10 was 0.012. Both median MLE estimates of β and p10 were lower than their 468 

respective median Bayesian parameter estimates, yet the median MLE estimates were inside the 469 

Bayesian 90% credibility intervals (Table 1). 470 

 The joint model’s inferences were also consistent with parameters estimated from an 471 

occupancy modeling framework. The site-specific replicate-level probabilities of occupancy, 472 

pi,occupancy, were consistent with site-specific molecular probabilities of detection, pi,joint, from the 473 

joint model (Appendix S3: Figure S5). A linear regression between the two parameters indicated 474 

that 71.8% of variation in pi,occupancy was explained by pi,joint (F-statistic: 45.9, p-value: 2.40e-6). 475 
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  476 

iv. Quantifying uncertainty to find the value of eDNA information 477 

At sites with lower trapping effort, adding eDNA data narrowed the credibility intervals 478 

for estimated crab density, relative to a model using only trapping data. Moreover, the leading 479 

edge of an invasion, like the Central and South Sound, often features low densities of the 480 

invading species; here, the combination of eDNA and trapping data vastly reduced the 481 

uncertainty associated with low trapping effort in these cases (Figure 4). As the trapping effort 482 

decreased, the marginal benefit (ΔCV) of eDNA data increased exponentially (Figure 4), 483 

dramatically increasing the precision of green crab density estimates at sites along the invasion 484 

front and at sites characterized by low trapping efforts.  485 

To identify the relative sensitivities of the two sampling methods, we determined the 486 

sampling effort necessary to detect a green crab with 90% confidence, given the joint model’s 487 

estimated parameters. This sampling effort was calculated for a range of simulated crab 488 

densities, from 0.056 crabs/trap (median estimated µcritical) to 3.0 crabs/trap. The detection 489 

sensitivity -- the probability of capturing at least one crab in one trap or the probability of one 490 

true positive qPCR amplification in triplicate trials -- was higher for eDNA sampling than for 491 

trap sampling, suggesting that the information provided by one water bottle is slightly greater 492 

than the information provided by one trap (Figure 5).  493 

 494 

v. eDNA’s greatest marginal benefit at low species densities and trapping effort 495 

 Simulations further indicated that the marginal benefit of eDNA data, measured as ΔCV, 496 

increased as trapping effort decreased for all simulated densities of green crab (Figure 6). 497 

Importantly, these information benefits tended to be highest at true crab densities (µsim) in the 498 
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range 0.05 – 0.50 crabs/trap, and the information benefit decreased at crab densities higher and 499 

lower than this range (Figure 6).  500 

 Both the joint and trap-only models produced accurate estimates of green crab density in 501 

a diverse set of simulations. For scenarios where µsim > 0, 100% of simulation replicates yielded 502 

90% credibility intervals of density estimates that contained the true green crab density, µsim. For 503 

scenarios where µsim = 0, no simulation replicates yielded 90% credibility intervals of density 504 

estimates that contained the true green crab density, µsim. 505 

  506 

Discussion 507 

Many management and policy decisions have prominent economic and social 508 

consequences, particularly surrounding invasive or endangered species, which often occur at low 509 

densities. Finding the leading edge of an invasion front can correspondingly require government 510 

agencies and others to engage in high-cost sampling that nevertheless has little power to detect 511 

rare individuals. As eDNA comes to the forefront as a routine sampling technique that can 512 

ameliorate some of these difficulties, it is important to quantify the value of this new data stream 513 

and to adequately characterize the uncertainty associated with all kinds of environmental 514 

sampling. By jointly modeling eDNA and traditional (trap) data for the invasive European green 515 

crab, we (1) estimate the abundance of the species at its leading edge of invasion, (2) quantify 516 

uncertainty in both detection methods and show the marginal information benefit of an eDNA 517 

data stream, and (3) offer a framework for integrating eDNA into existing data streams and 518 

survey programs.  519 

 520 

Improving interpretation of eDNA data  521 
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Our quantitative approach builds upon previous work adapting occupancy modeling 522 

approaches to facilitate eDNA data interpretation (Griffin et al., 2019; Lahoz-Monfort et al., 523 

2016; Pilliod et al., 2013; Schmidt et al., 2013). These previous approaches suggest that there are 524 

two classes of sites—those that are occupied and those that are not—and crucially, that the 525 

probability of detecting a species is constant within a given ecological context. This assumption 526 

can be insufficient in the context of eDNA surveys, where local abundance can induce 527 

heterogeneity in detection probability (Altwegg & Nichols, 2019; Royle & Nichols, 2003; Royle 528 

& Dorazio, 2008). The joint model presented here uses the heterogeneity in molecular detection 529 

probability to estimate species density, rather than occupancy, and operates under the assumption 530 

that the probability of a true detection increases as species density increases.    531 

The joint model uses observations from two sampling methods, each generated 532 

independently from a shared underlying species density. The two data streams inform one 533 

another: the combined likelihood borrows strength from the sites with greater trapping effort 534 

over the sampling period to infer detection biases across all locations and to inform species 535 

density at data-limited sites. The model also reveals the relative sensitivities of the two sampling 536 

methods and the relative information contributions of eDNA data at varying trap sampling 537 

efforts. 538 

In practical application, environmental factors including flow rates, turbulence, 539 

temperature, water chemistry, and UV light can affect the dilution, persistence, and strength of 540 

an eDNA signal (Andruszkiewicz et al., 2017; Barnes & Turner, 2016; Deiner & Altermatt, 541 

2014; Sansom & Sassoubre, 2017). Quantitatively modeling eDNA detections and integrating 542 

traditional and new sampling approaches helps to mitigate this challenge by capturing 543 

uncertainty in how eDNA detections arise from true species presence and density.  544 
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To overcome challenges with parameter identifiability typical of hierarchical models of 545 

eDNA data (Griffin et al., 2019; Guillera-Arroita et al., 2017), the model uses a Bayesian 546 

framework and sets plausible bounds on the false positive probability as prior information. 547 

Recognizing the tendency for Bayesian priors to induce undue influence on the model’s 548 

inferences (Cressie et al., 2009; Lele & Dennis, 2009), we conduct robustness assessments to 549 

investigate the effect of prior assumptions. We find that our inferences are largely robust to prior 550 

specification (Appendix S3: Figure S3 and Figure S4); although at certain sites with a low 551 

trapping effort, there is not enough information in the data to limit the influence of the specified 552 

false positive probability prior (Appendix S3: Figure S3). 553 

Importantly, the joint model’s results can aid appropriate management responses after a 554 

molecular detection. In management contexts, positive eDNA detections are commonly used to 555 

prompt non-molecular sampling for corroboration (Sepulveda et al., 2020), as shown in the Great 556 

Lakes invasive carp eDNA surveillance program (Woldt et al., 2020). However, after a positive 557 

eDNA detection, managers must decide how intense (and therefore expensive) the management 558 

response must be, and it is often difficult or impossible to confirm a species’ absence with 559 

traditional methods (Morrison et al., 2007; Russell et al., 2017). Quantifying uncertainty for any 560 

given detection method encourages agencies to explicitly set tolerable risk levels for the presence 561 

of a target species.   562 

The results of the joint model offer a framework for inferring a species density threshold, 563 

µcritical, at which a molecular detection is as likely to be a false positive detection as a true 564 

positive detection. This value provides an opportunity to investigate the probability that an 565 

eDNA detection reflects the true presence of a species. For example, two sites yielded one 566 

positive qPCR detection each, yet the median estimated crab densities are very near zero (0.0013 567 
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and 6.5e-7 crabs/trap at Jimmycomelately creek (JIM) and KVI Beach (KVI), respectively). 568 

Given the combination of molecular and trapping data in hand, these detections are as likely to 569 

be false positives than true positives. Further detections by either method would change this 570 

interpretation, but the ability to quantify uncertainty in this way is valuable. 571 

 572 

Quantifying the practical value of eDNA information 573 

Our framework offers a way to fold genetic surveys into existing management practices, 574 

therefore moving the contribution of eDNA data to management practices from “potential” value 575 

to practical value. For the specific example of the green crab assay, the marginal benefit of 576 

eDNA data – measured as increases in the precision of species density estimates upon the 577 

addition of eDNA data – is highest at sites with low trapping effort, and this information benefit 578 

increases exponentially as traditional trapping effort decreases (Figure 4, Figure 6). Thus data-579 

limited applications particularly stand to gain from molecular surveys. 580 

Simulations identify a parameter space, or a combination of true green crab density and 581 

existing trapping effort, where the marginal benefit of eDNA information is highest. These 582 

simulations suggest that eDNA sampling is most useful at low trapping efforts and a green crab 583 

density of about 0.05 – 0.50 crabs/trap, a sampling combination in which a true molecular 584 

detection is likely, and a detection through baited trapping is unlikely. Importantly, as the true 585 

green crab density falls below about 0.05 crabs/trap (where the true-detection rate (p11) falls 586 

below the false-detection rate (p10)), the information benefit of eDNA data decreases. Previous 587 

work faces similar challenges in detecting green crab eDNA at low densities with existing 588 

molecular assays, and suggested a different assay was more sensitive during green crab spawning 589 

periods (Crane et al., 2021).  590 



   27 
 

 

Therefore, the joint model not only indicates where the marginal benefit of eDNA 591 

sampling is highest, but also where marginal benefit of eDNA is negligible, which is valuable 592 

information for allocating limited monitoring resources. We find eDNA sampling is unlikely to 593 

improve management at locations with high trapping effort or a high species density (Figure 4, 594 

Figure 6) – situations in which managers essentially already have the information they seek. For 595 

example, eDNA samples were collected in Dungeness National Wildlife Refuge, an area rich in 596 

marine life that contains one of the world’s longest sand spits. The watershed in this area is also 597 

home of the Jamestown S’Klallam Tribe, providing abundant resources from its tidelands and 598 

marine waters (Jamestown S’Klallam Tribe, 2007). U.S. Department of Fish and Wildlife 599 

implements an intense removal trapping procedure in the national refuge. In 2020 in Graveyard 600 

Spit Channel (GSC), 1369 traps were set, and three green crabs were recovered. The 601 

combination of high trapping effort and inferred crab densities well below µcritical means eDNA 602 

sampling would be unlikely to improve the existing survey estimates at this site.  603 

The veracity of negative results are often of equal importance as confirmation of positive 604 

detections, and eDNA sampling has previously been used in species eradication campaigns 605 

(Carim et al., 2020; Davison et al., 2019; Larson et al., 2020). However, the sensitivity of the 606 

assay we tested here illustrates a case in which the similar rates of detection between traditional 607 

and molecular sampling mean that it is difficult to confirm a species’ absence with either method 608 

(Morrison et al., 2007; Russell et al., 2017). 609 

Although costs of eDNA-based surveys tend to compare favorably with those of 610 

traditional capture-based methods (Biggs et al., 2015; Sigsgaard et al., 2015), future work should 611 

identify the survey regime that maximizes detection probability under a fixed budget. Previous 612 

cost-efficiency analyses find that eDNA is less cost-efficient at low sample numbers, since costs 613 
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associated with initial investments in reagents and supplies for laboratory analysis are high 614 

(Smart et al., 2016). However, since traditional sampling requires repeat visits and more time- 615 

and labor-intensive sampling effort, eDNA sampling has lower field labor and transportation 616 

costs and can become more cost-effective compared to traditional sampling when examining a 617 

large number of sites (Khalsa et al., 2020). Such cost comparisons are critical when identifying 618 

the optimal allocation of survey effort to maximize detection, and future cost-efficiency inquiries 619 

should consider the role of site-specific characteristics that affect the relative costs of sampling 620 

methods. 621 

 622 

Increasing certainty at the green crab’s invasion front 623 

By contrast, sites with low trapping effort are likely to benefit from the additional 624 

information eDNA offers. In the context of green crab, the most notable example of eDNA 625 

data’s value at the invasion front is the estimation of a relatively high green crab density at a site 626 

well beyond green crab’s previously known distribution (Figure 2, Figure 3, Appendix S4: Table 627 

S4). By interpreting the pattern of eDNA signals, the joint model indicates green crab eDNA 628 

presence with relatively high certainty at Raab’s Lagoon (RAA) on Vashon Island, suggesting 629 

that the local species density is perhaps low and previously undetectable using traditional 630 

monitoring methods implemented at a low effort. We estimate the green crab density at Raab’s 631 

Lagoon – one of the sites beyond the previously known invasion front – to be 0.16 crabs/trap 632 

(4.0e-61, 0.61 90%CrI). The probability that the green crab density is greater than the median 633 

µcritical, or the crab density at which the associated true probability of detection equals the 634 

estimated false positive probability, is 0.64 (Figure 2, Appendix S4: Table S4). This finding is 635 

consistent with studies showing that sufficient eDNA sampling applied across large geographic 636 
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areas can reveal unexpected patterns and new occurrences of species missed by traditional 637 

approaches (Mckelvey et al., 2016; Tucker et al., 2016), and the Bayesian modeling framework 638 

allows these statements of new occurrences to be tempered by quantified uncertainty (Hobbs & 639 

Hooten, 2015). However, the model treats molecular detections and trapped adults as 640 

conceptually equivalent, with a joint estimate of species “density” in units of crabs per trap. This 641 

is a somewhat imprecise description insofar as molecular detections potentially include larval 642 

and dead individuals. Depending upon management priorities, detections of larval or dead 643 

individuals may (or may not) rise to the level of importance of live adult detections. Indeed, 644 

results of trapping at RAA and KVI in July 2021 suggest that these molecular detections may 645 

have been larvae, and to date, no adults have been captured at RAA, KVI, or neighboring sites in 646 

the South Sound through trapping efforts by WSG Crab Team, WDFW, and partners. 647 

 648 

False Positives and False Negatives 649 

 The fear of false positive detections is often cited as the primary hurdle for adopting 650 

eDNA approaches for species monitoring (Jerde, 2019). However, the term “false positive” can 651 

be misleading in the eDNA context (Darling et al., 2021): different mechanisms contribute to 652 

false positive errors, and we can distinguish between errant detection in an individual sample vs. 653 

errant detection at an unoccupied site (Chambert et al., 2015; Darling et al., 2021; Guillera-654 

Arroita et al., 2017). Our model explicitly estimates a molecular false positive probability, which 655 

incorporates both the probability of a false positive sample and the probability of a false positive 656 

site through information included in the parameter’s prior distribution and unambiguous 657 

presence sites with a high trapping intensity. In this study, however, field negative controls 658 

(clean water collected using the same protocol and equipment as field samples) were not 659 
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collected at all sites, and these negative controls are critical for detecting contamination and 660 

informing the false positive probability (Goldberg et al., 2016). Future work should include 661 

separate negative controls at each stage of the eDNA sampling process to help identify sources 662 

of contamination when it occurs and to properly model the false positive probability. 663 

Notably, our false positive probability does not include scenarios in which we detect 664 

nonviable organisms or larval individuals: these are true-positive detections of eDNA present at 665 

the sampled site. In a management context, molecular detection of larvae alone does not 666 

necessarily indicate a high probability of invasion. However, with an invasive species with high 667 

larval-dispersal potential, larval detection beyond the known invasion front has high value for 668 

management planning and can be used to prioritize areas for assessment and prospecting.  669 

False negative detections similarly erode an assay’s usefulness in eDNA work, as in 670 

every other sampling method (Goldberg et al., 2016; Hunter et al., 2019). PCR inhibition can 671 

mask even high eDNA copy numbers and thereby profoundly affects molecular detection 672 

estimates (Jane et al., 2015). For example, DNA extracted from turbid water often contains 673 

humic acid and tannin compounds, created through non-enzymatic decay of the organic material, 674 

and these compounds can inactivate DNA polymerase and inhibit the PCR amplification process, 675 

reducing PCR efficiency or causing PCR failure (Albers et al., 2013; Goldberg et al., 2016). No 676 

samples included in this analysis were substantially inhibited, but it remains important to test for 677 

inhibition to guard against an inflated false negative rate in any molecular assay. 678 

 679 

Conclusion 680 

Given the limited resources available to State and tribal government agencies charged 681 

with controlling invasive species, there is significant value in identifying and implementing 682 
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optimal invasive species management strategies. Applications of eDNA methods represent one 683 

of the most significant advances in invasive species surveillance in the recent decade, yet 684 

uncertainty inherent in eDNA sampling means managers are often hesitant to direct management 685 

actions based solely on molecular evidence. Although previous work identifies the potential for 686 

DNA-based methods to amplify the uncertainty already associated with invasive species risk 687 

assessment (Benke et al., 2007; Darling & Mahon, 2011; Sikder et al., 2006), here we 688 

demonstrate that eDNA increases certainty at data-limited locations, and we highlight scenarios 689 

under which eDNA sampling is most useful in the context of green crab management. The value 690 

of eDNA sampling at low species densities and data-limited areas has largely been discussed 691 

(Crookes et al., 2020; Suarez-Menendez et al., 2020; Villacorta-Rath et al., 2020), but here we 692 

provide a means to formally quantify this value. 693 

 The joint model aids eDNA data interpretation and contributes to a growing body of 694 

analyses providing frameworks for inferring confidence in patterns of eDNA detections (Furlan 695 

et al., 2016; Guillera-Arroita et al., 2017; Lahoz-Monfort et al., 2016). This approach also offers 696 

a means to combine eDNA and traditional monitoring methods to make more reliable inferences 697 

about data-limited sites and provides reassurance to managers and other stakeholders leery of 698 

adopting a new technology. While environmental DNA methods can support detection of 699 

invasive species at low abundances, improved statistical methods to interpret patterns of 700 

environmental DNA detections can empower informed management responses. 701 

 702 

 703 

 704 

 705 
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Tables 1063 

Table 1: Parameters estimated by the joint model, with the median and 90% credibility intervals 1064 

(highest density interval calculation) of the 10,000 sampling iterations. Φ is the overdispersion 1065 

parameter in the negative binomial distribution of species counts (Eq. 1), β is the coefficient 1066 

relating species density to true positive molecular detection probability (Eq. 2), and p10 is the 1067 

false positive molecular detection probability (Eq. 3). 1068 

 1069 

Parameter Median Estimate 90% Credibility Interval 

Φ 0.94 0.72, 1.2 

β 2.5 1.6, 3.5 

p10 0.022 0.0095, 0.048 

 1070 

 1071 

 1072 

 1073 

 1074 

 1075 

 1076 

 1077 

 1078 

 1079 

 1080 

 1081 

 1082 

 1083 
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Figures 1084 

 1085 

Figure 1: Environmental DNA and trapping detections of green crab over the sampling period.  1086 

Purple dots indicate sites where green crabs were trapped and eDNA samples yielded at least one 1087 

positive detection. Yellow dots indicate sites where no green crabs were trapped and eDNA 1088 

samples yielded at least one positive detection. Grey dots indicate sites where no green crabs 1089 

were trapped and eDNA samples yielded no positive detections. Sampled sites are labeled with 1090 

site ID and polygons are colored by region. Inset map indicates study location in the context of 1091 

the United States. 1092 

 1093 
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 1094 

Figure 2: Median of the joint model’s posterior distributions of estimated green crab density at 1095 

the 20 sampled sites. Colors indicate the median green crab density (crabs/trap) estimated by the 1096 

joint model. The red lines designate previously identified invasion fronts in 1999, 2012, and 1097 

2020. 1098 

 1099 
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 1100 

Figure 3A: Posterior distributions of estimated green crab density at each of the twenty sampled 1101 

sites. Red boxplots are the estimated densities using the joint model, incorporating both trapping 1102 

and eDNA information, and blue boxplots are the estimated densities using the trap-only model, 1103 

using only trapping information. The lower and upper hinges correspond to the posterior data’s 1104 

first and third quartiles. B. Subset of sites where the joint model’s estimated median green crab 1105 

density ranges between 4.4e-8 and 0.1 crabs/trap. 1106 

 1107 
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 1108 

Figure 4: The difference in the coefficient of variation (ΔCV) in the posterior distributions of the 1109 

estimated green crab densities between a model using only trapping information (trap-only 1110 

model) and a model using both trapping and eDNA information (joint model). The gray line 1111 

designates the best-fit trend line, ΔCV = 54*exp(-2.94*log(traps)). 1112 

 1113 
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 1114 

Figure 5: The sampling effort necessary to detect a green crab with 90% confidence. Lines 1115 

designate the type of sampling effort (water bottles, traps). 1116 

 1117 

 1118 
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Figure 6: The marginal benefit of eDNA data at each simulated true crab density and trapping 1119 

effort. The information benefit is represented by the difference in the coefficient of variation 1120 

(ΔCV) in the posterior distributions of the estimated green crab densities between a model using 1121 

only trapping information (trap-only model) and a model using both trapping and eDNA 1122 

information (joint model). Each grid cell represents the mean ΔCV for all simulation scenario 1123 

replicates. Note: Both the x and y axes are presented on a non-linear scale. 1124 

 1125 

 1126 

 1127 

 1128 

 1129 

 1130 

 1131 

 1132 

 1133 

 1134 

 1135 

 1136 

 1137 

 1138 

 1139 

 1140 

 1141 
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 1145 

Appendix S1 1146 

Methods 1147 

 To evaluate the relative predictive accuracy of model choices that represent the green 1148 

crab capturing process, we conducted a leave-one-out cross-validation (LOO) approach (Vehtari 1149 

et al., 2017). Using the ‘loo’ package (version 2.4.1) (Vehtari et al., 2020), we estimated the 1150 

pointwise out-of-sample prediction accuracy from two fitted models. The two models varied in 1151 

the distribution choices used to represent the crab capture process in traps. Eq. S1a and Eq. S1b 1152 

varied between models, and Eq. S2-S4 were identical in the two models.   1153 

The observed count, Y, of a species at site i and trap sample k is drawn from a poisson 1154 

distribution with a mean species density, µi (Eq. S1a). 1155 

 1156 

Yi,k ~ Poisson(µi)                                               Eq. S1a 1157 

 1158 

The observed count, Y, of a species at site i and trap sample k is drawn from a negative 1159 

binomial distribution with a mean species density, µi, and an overdispersion parameter, Φ (Eq. 1160 

S1b). 1161 

Yi,k ~ NegBinomial(µi, Φ)                                                Eq. S1b 1162 

 1163 

 1164 
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The relationship between the probability of a true molecular detection p11, scaling 1165 

coefficient β, and probability of a false molecular detection p10 remain the same as in the main 1166 

manuscript (Eq. S2-S4). 1167 

p11,i = µi / (µi + β)                                                   Eq. S2 1168 

pi = p10 + p11,i                                                       Eq. S3 1169 

Ki,j ~ Binomial(Ni,j, pi,)                                                  Eq. S4 1170 

 1171 

We ran the two models via ‘rstan’, with a step size of 0.5 and 4 chains with 500 warm-up 1172 

and 2,500 sampling iterations per chain. The expected log pointwise predictive density (ELPD) 1173 

was used to measure the goodness of the whole predictive distribution, and loo_compare() was 1174 

used to compare the ELPD among the two models (Data S2). 1175 

 1176 

Results 1177 

The model using a negative binomial distribution with an overdispersion parameter (Eq. 1178 

S1b) provided the greatest predictive accuracy given the observed data (Table S1). 1179 

 1180 

Table S1: Results of leave-one-out (LOO) cross-validation to compare the predictive accuracy of 1181 

the model set. ELPD is the Bayesian LOO estimate of the expected log pointwise predictive 1182 
density of the given model. SE is the standard error of the ELPD. ΔELPD is the difference 1183 
between the model’s ELPD and the ELPD of the model with the greatest predictive accuracy in 1184 

the model set. 1185 

Model Equation ELPD SE ΔELPD 

Negative binomial & overdispersion parameter Eq. S1b -856.8 42.3 -0.0 

Poisson Eq. S1a -1023.6 66.9 -166.7 

 1186 

 1187 
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 1214 

Appendix S2 1215 

 Due to the hierarchical qPCR data structure, where qPCR triplicates are nested within 1216 

water bottles within sites, we provide a hierarchical version of the model that accounts for 1217 

membership of qPCR replicates within nested groups. All molecular detection probabilities and 1218 

species densities are estimated on a log scale. This model is suitable for datasets with sufficient 1219 

intra-site and inter-site replication and was not implemented in the manuscript, since the dataset 1220 

was not robust enough to estimate the variance in the probability of detection among bottles at a 1221 

site, σ. 1222 

The observed count, Y, of a species at site i and trap sample k is drawn from a negative 1223 

binomial distribution with a mean species density, µi, and an overdispersion parameter, Φ (Eq. 1224 

S1). 1225 

Yi,k ~ NegBinomial(µi, Φ)                                              Eq. S1 1226 

 1227 

The probability of a true molecular detection, p11, at site, i, is a saturating function of 1228 

species density µi and scaling coefficient β (Eq. S2). 1229 

 1230 

p11,i = µi / (µi + β)                                                   Eq. S2 1231 

 1232 
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The false positive probability, p10, contributes to the overall molecular detection 1233 

probability, p, at site i (Eq. S3; p is bounded between 0 and 1). 1234 

 1235 

pi = p10 + p11,i                                                       Eq. S3 1236 

 1237 

The probability of molecular detection, p, at site i and water sample j is drawn from a 1238 

normal distribution with mean molecular detection probability, p, at site i, and a standard 1239 

deviation, σ. 1240 

 1241 

     pj,i ~ Normal(pi, σ)                                                    Eq. S4 1242 

 1243 

The number of positive qPCR detections, K, out of the number of trials, N, in water 1244 

sample j at site i is drawn from a binomial distribution, with a probability of success on a single 1245 

trial, p, at site i and water sample j (Eq. S5). 1246 

 1247 

Ki,j ~ Binomial(Ni,j, pi,j)                                                  Eq. S5 1248 

 1249 

 1250 
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 1252 

 1253 

 1254 

 1255 
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Appendix S3 1260 

 1261 

 1262 

Figure S1: Depiction of trapping effort (number of traps) and green crab catch per unit effort 1263 

(CPUE, crabs/trap) from 20 sampled sites over selected sampling period. 1264 

 1265 

 1266 

 1267 

 1268 
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 1269 

 1270 

Figure S2: A. Number of crabs trapped per trap, per day at each of 20 sites over the designated 1271 
sampling period. (Note: The 2020-09-29 date at the STA site represents only 3 traps). B. Date of 1272 
eDNA sampling during sampling period. 1273 

 1274 

 1275 
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 1276 
Figure S3: Results of sensitivity analysis used to assess sensitivity of the model’s inferences to 1277 

the specification of the false positive probability, p10, prior distribution. Values on the x axis 1278 
indicate the p10 value set prior to model refitting. A. Estimated µ for sites RAA and IND. Solid 1279 

line indicates posterior median, and shaded area represents the 90% credibility interval. B. Solid 1280 
line indicates posterior median for parameter β, and shaded area represents the 90% credibility 1281 

interval. C. Estimated µ for sites KVI and JIM. Solid line indicates posterior median, and shaded 1282 
area represents the 90% credibility interval. D. Estimated µ for sites KVI and JIM for remaining 1283 
sites. Solid lines indicate posterior median. 1284 

 1285 
 1286 
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 1287 
 1288 

Figure S4: Comparison of parameter estimates of µ between the data cloning procedure (µMLE) 1289 

and Bayesian model fitting (µBayes). Points are colored by trapping effort at each site, and the 1290 

dashed line represents the 1:1 line. 1291 

 1292 

 1293 

 1294 
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 1295 

Figure S5: Comparison of parameter estimates of pi (probability of molecular detection; p10 + 1296 

p11) at each site from the joint model and parameter estimates of pi (replicate level occupancy 1297 
probability) from an occupancy model framework. Dotted gray line indicates the fitted linear 1298 

regression (pi,occupancy = 1.02*pi,joint + 0.027). 1299 

 1300 

 1301 

 1302 

 1303 

 1304 

 1305 
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 1307 

 1308 

 1309 
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 1314 

Appendix S4 1315 

 1316 
Table S1: Sanger sequencing results with the forward primer of the CO1 region. Note: 1317 

Environmental samples from Lummi Sea Pond (LSP) were identically processed with other 1318 
samples in this study, but the site was removed from modeling analysis due to insufficient 1319 
trapping information. 1320 

 1321 

Site Region Sample ID Sequence 

Lummi 

Sea Pond 

(LSP) 

Central 

Sound 

LSP-

20201008-3 

CNNGNGCTTCNGTTGATTTAGGGATTTTCTCTTT 

ACATTTAGCCGGGGTTTCTTCTATTTTAGGAGCTGT

AAATTTTATAACAACTATTATCAATATGCGTTCTNN

C 

Lummi 

Sea Pond 

(LSP) 

Central 

Sound 

LSP-

20201008-4 

CCNNNNNGGNGCTTCNGTTGATTTAGGGATTTTCT 

CTTTACATTTAGCCGGGGTTTCTTCTATTTTAGGAG

CTGTAAATTTTATAACAACTATTATCAATATGCGTT

CT 

Ocean 

Shores 

(OSH) 

Washington 

Coast 

OSH-

20200926-1 

CCATNNNGGNGCTTCAGTTGANTTAGGGATTTTCTC

TTTACATTTAGCCGGGGTTTCTTCTATTTTAGGAGC

TGTAAATTTTATAACAACTATTATCAATATGCGTTC

TTTC 

Ocean 

Shores 

(OSH) 

Washington 

Coast 

OSH-

20200926-2 

CNGGNGCTTNNGTTGATTTAGGGATTTTCTCTTTAC

ATTTAGCCGGGGTTTCTTCTATTTTAGGAGCTGTAA

ATTTTATAACAACTATTATCAATATGCGTTCTNNN 

Ocean 

Shores 

(OSH) 

Washington 

Coast 

OSH-

20200926-4 

GCTTNNGNNGNNTTAGGGANTTTCTCTTTACATTTA

GCCGGGGTTTCTTCTATTTTAGGAGCTGTAAATTTT

ATAACAACTATTATCAATATGCGTTCTNT 

Ocean 

Shores 

(OSH) 

Washington 

Coast 

OSH-

20200926-5 

GGNGCTTCNGTTGNNTTAGGGANTTTCTCTTTACAT

TTAGCCGGGGTTTCTTCTATTTTAGGAGCTGTAAAT

TTTATAACAACTATTATCAATATGCGTTCTTTCA 

Tokeland 

East 

(TKE) 

Washington 

Coast 

TKE-

20200926-1 

TGGNGCTTCNGTTGNNTTAGGGATTTTCTCTTTACA

TTTAGCCGGGGTTTCTTCTATTTTAGGAGCTGTAAA

TTTTATAACAACTATTATCAATATGCGTTCTTTCA 

Tokeland 

East 

(TKE) 

Washington 

Coast 

TKE-

20200926-4 

GGNGCTTNNGTTGANTTAGGGANTTTCTCTTTACAT

TTAGCCGGGGTTTCTTCTATTTTAGGAGCTGTAAAT

TTTATAACAACTATTATCAATATGCGTTCTTTCAN 
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Tokeland 

West 

(TKW) 

Washington 

Coast 

TKW-

20200926-1 

TGGNGCTTCNGTTGNNTTAGGGATTTTCTCTTTACA

TTTAGCCGGGGTTTCTTCTATTTTAGGAGCTGTAAA

TTTTATAACAACTATTATCAATATGCGTTCTTTCA 

Tokeland 

West 

(TKW) 

Washington 

Coast 

TKW-

20200926-2 

TGGNGCTTNNGTTGNNTTAGGGATTTTCTCTTTACA

TTTAGCCGGGGTTTCTTCTATTTTAGGAGCTGTAAA

TTTTATAACAACTATTATCAATATGCGTTCTTT 

Tokeland 

West 

(TKW) 

Washington 

Coast 

TKW-

20200926-3 

CTGGNGCTTCAGTTGNNTTAGGGANTTTCTCTTTAC

ATTTAGCCGGGGTTTCTTCTATTTTAGGAGCTGTAA

ATTTTATAACAACTATTATCAATATGCGTTCTTTCA 

Tokeland 

West 

(TKW) 

Washington 

Coast 

TKW-

20200926-4 

CNGGNGCTTCAGTTGANTTAGGGATTTTCTCTTTAC

ATTTAGCCGGGGTTTCTTCTATTTTAGGAGCTGTAA

ATTTTATAACAACTATTATCAATATGCGTTCTTTCA 

Tokeland 

West 

(TKW) 

Washington 

Coast 

TKW-

20200926-5 

CNNTNNNTNNNNGNNNNNGTTGANTTAGGGANTTT 

CTCTTTACATTTAGCCGGGGTTTCTTCTATTTTAGG

AGCTGTAAATTTTATAACAACTATTATCAATATGCG

TTCTTTCA 

 1322 

 1323 

 1324 

 1325 

 1326 

 1327 

 1328 

 1329 

 1330 

 1331 

 1332 

 1333 

 1334 

 1335 

Table S2: Sites sampled for green crab eDNA. Sites within regions Central Sound, South Sound, 1336 

Washington Coast, and Whatcom were used to construct the joint and trap-only models, and sites 1337 
within Skagit Bay were used to inform the prior distribution for the probability of a false positive 1338 
molecular detection, p10. The hyperparameters for the prior distributions used to estimate µ at 1339 
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each site are included, and these hyperparameters varied by sites with a history of trapped crabs 1340 
from 2017-2020 (gamma(0.25, 0.25)) and sites without a history of trapped crabs from 2017-1341 

2020 (gamma(0.05, 0.05)). 1342 
 1343 

Site (ID) Date Region Latitude Longitude 

Hyper- 

parameters 

for µ 

gamma 

prior 

distribution  

Chicken Coop 

Creek (CCO) 
10/5/2020 

Central 

Sound 
48.02606 -122.99778 0.05, 0.05 

Dungeness Base 

Lagoon (DBL) 
10/14/2020 

Central 

Sound 
48.14652 -123.18392 0.05, 0.05 

Dungeness East 

Lagoon (DEL) 
10/14/2020 

Central 

Sound 
48.1766233 -123.1263022 0.05, 0.05 

Graveyard Spit 

Channel (GSC) 
10/14/2020 

Central 

Sound 
48.17371 -123.13612 0.25, 0.25 

Indian Island 

(IND) 
10/5/2020 

Central 

Sound 
48.02523 -122.71583 0.25, 0.25 

Jimmycomelately 

Creek (JIM) 
10/5/2020 

Central 

Sound 
48.02326 -123.00648 0.25, 0.25 

KVI Beach 

(KVI) 
10/4/2020 South Sound 47.42269 -122.43114 0.05, 0.05 

Rabb's Lagoon 

(RAA) 
10/4/2020 South Sound 47.39204 -122.43377 0.05, 0.05 

Titlow (TIT) 10/21/2020 South Sound 47.24875 -122.55139 0.05, 0.05 

John's River 

(JOR) 
9/26/2020 

Washington 

Coast 
46.8997217 -123.9967067 0.25, 0.25 

Ocean Shores 

(OSH) 
9/26/2020 

Washington 

Coast 
46.99838 -124.13952 0.25, 0.25 

Stackpole (STA) 9/29/2020 
Washington 

Coast 
46.59743 -124.03769 0.25, 0.25 

Tokeland East 

(TKE) 
9/26/2020 

Washington 

Coast 
46.70789 -123.97098 0.25, 0.25 

Tokeland West 

(TKW) 
9/26/2020 

Washington 

Coast 
46.70805 -123.97423 0.25, 0.25 

California Creek 

(CAC) 
9/25/2020 Whatcom 48.961843 -122.49613 0.25, 0.25 

Chuckanut Creek 

(CHU) 
9/29/2020 Whatcom 48.69919 -122.49613 0.25, 0.25 

Dakota Creek 

(DAK) 
9/25/2020 Whatcom 48.97244 -122.72922 0.25, 0.25 

Noname Creek 

(NON) 
9/25/2020 Whatcom 48.96821 -122.73333 0.05, 0.05 

Pillars (PIL) 9/25/2020 Whatcom 48.989081 -122.754815 0.25, 0.25 
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Wilseis (WLS) 9/25/2020 Whatcom 48.989081 -122.754815 0.25, 0.25 

Brown Point 2/21/2019  Skagit Bay 48.26974 -122.45904 N/A 

Dugualla Bluff 2/21/2019  Skagit Bay 48.37722 -122.58163 N/A 

Goat Island 2/21/2019  Skagit Bay 48.360889 -122.53468 N/A 

Hoypus 2/21/2019  Skagit Bay 48.41127 -122.60754 N/A 

Lone Tree Point 2/21/2019  Skagit Bay 48.40744 -122.55612 N/A 

Mariners Bluff 2/21/2019  Skagit Bay 48.28214 -122.53178 N/A 

Strawberry Point 2/21/2019  Skagit Bay 48.3214 -122.51651 N/A 

 1344 
 1345 

 1346 

 1347 
 1348 

 1349 
 1350 
 1351 
 1352 

 1353 
 1354 

 1355 
 1356 
 1357 

 1358 

 1359 
 1360 
 1361 

 1362 
 1363 

 1364 
 1365 
 1366 

 1367 
 1368 
 1369 

 1370 

 1371 

 1372 
 1373 
 1374 
Table S3: Quantitative PCR (qPCR) results of sampled sites. Five water samples were collected 1375 
for 20 sites with trap data. DNA extracted from each water sample underwent three qPCR 1376 

replicates, and the Ct is recorded for each replicate. Ct shift indicates the difference in Ct 1377 
between the eDNA sample spiked with a synthetic positive control and the average of three 1378 
positive controls.  1379 

 1380 



   69 
 

 

Site (ID) Region Replicate 1 Replicate 2 Replicate 3 Ct Shift 

Chicken 

Coop Creek 

(CCO) 

Central 

Sound 

No Ct No Ct No Ct 

0.25 

No Ct No Ct No Ct 

No Ct No Ct No Ct 

No Ct No Ct No Ct 

No Ct No Ct No Ct 

Dungeness 

Base 

Lagoon 

(DBL) 

Central 

Sound 

No Ct No Ct No Ct 

-0.46 

No Ct No Ct No Ct 

No Ct No Ct No Ct 

No Ct No Ct No Ct 

No Ct No Ct No Ct 

Dungeness 

East Lagoon 

(DEL) 

Central 

Sound 

No Ct No Ct No Ct 

1.27 

No Ct No Ct No Ct 

No Ct No Ct No Ct 

No Ct No Ct No Ct 

No Ct No Ct No Ct 

Graveyard 

Spit Channel 

(GSC) 

Central 

Sound 

No Ct No Ct No Ct 

0.44 

No Ct No Ct No Ct 

No Ct No Ct No Ct 

No Ct No Ct No Ct 

No Ct No Ct No Ct 

Indian 

Island (IND) 

Central 

Sound 

37.12 No Ct No Ct N/A 

No Ct No Ct No Ct -0.09 

No Ct No Ct No Ct -0.24 

No Ct No Ct No Ct 0.35 

No Ct No Ct No Ct -0.49 

Jimmycome-

lately Creek 

(JIM) 

Central 

Sound 

No Ct No Ct No Ct 

-0.81 

No Ct 37.46 No Ct 

No Ct No Ct No Ct 

No Ct No Ct No Ct 

No Ct No Ct No Ct 

KVI Beach 

(KVI) 

South 

Sound 

No Ct No Ct No Ct -0.3 

No Ct No Ct No Ct 0.6 

36.88 No Ct No Ct N/A 

No Ct No Ct No Ct -0.52 

No Ct No Ct No Ct 1.64 

South 

Sound 

No Ct 34.56 No Ct N/A 

No Ct 36.76 No Ct N/A 
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Rabb's 

Lagoon 

(RAA) 

No Ct No Ct No Ct -0.51 

No Ct No Ct No Ct -1.04 

36.81 No Ct No Ct N/A 

Titlow (TIT) 
South 

Sound 

No Ct No Ct No Ct 

-0.12 

No Ct No Ct No Ct 

No Ct No Ct No Ct 

No Ct No Ct No Ct 

No Ct No Ct No Ct 

John's River 

(JOR) 

Washington 

Coast 

No Ct No Ct 36.82 N/A 

No Ct No Ct No Ct 1.28 

No Ct No Ct No Ct 1.41 

No Ct No Ct No Ct 0.42 

No Ct No Ct No Ct 0.07 

Ocean 

Shores 

(OSH) 

Washington 

Coast 

36.42 34.54 34.47 

N/A 

34.33 No Ct 37.29 

38.5 37.1 37.67 

36.25 34.16 33.64 

34.82 34.25 34.43 

Stackpole 

(STA) 

Washington 

Coast 

No Ct No Ct No Ct 

1.99 

No Ct No Ct No Ct 

No Ct 37.08 No Ct 

No Ct No Ct No Ct 

No Ct No Ct 36.41 

Tokeland 

East (TKE) 

Washington 

Coast 

36.15 35.59 No Ct 

N/A 

36.25 36.23 34.45 

No Ct No Ct 36.35 

35.45 35.23 34.66 

No Ct No Ct 35.15 

Tokeland 

West 

(TKW) 

Washington 

Coast 

33.75 33.24 33.69 

N/A 

32.56 33.09 32.62 

32.56 33.42 32.49 

33.53 33.89 30.2 

33.83 33.82 33.53 

California 

Creek 

(CAC) 

Whatcom 

No Ct No Ct No Ct 0.05 

No Ct 37.05 No Ct N/A 

No Ct No Ct No Ct 0.82 

No Ct No Ct No Ct -1.31 

No Ct No Ct No Ct -0.91 

Whatcom No Ct No Ct No Ct -0.36 
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Chuckanut 

Creek 

(CHU) 

No Ct No Ct No Ct 

No Ct No Ct No Ct 

No Ct No Ct No Ct 

No Ct No Ct No Ct 

Dakota 

Creek 

(DAK) 

Whatcom 

No Ct No Ct No Ct 1 

No Ct No Ct No Ct 1.34 

No Ct No Ct 37.73 N/A 

No Ct No Ct No Ct -0.04 

No Ct No Ct No Ct -0.3 

Noname 

Creek 

(NON) 

Whatcom 

No Ct No Ct No Ct 

0.25 

No Ct No Ct No Ct 

No Ct No Ct No Ct 

No Ct No Ct No Ct 

No Ct No Ct No Ct 

Pillars (PIL) Whatcom 

No Ct No Ct No Ct 0.24 

No Ct No Ct No Ct 0.21 

No Ct No Ct No Ct 0.7 

No Ct No Ct No Ct 1.27 

No Ct No Ct 36.11 N/A 

Wilseis 

(WLS) 
Whatcom 

No Ct No Ct No Ct 0.11 

No Ct No Ct No Ct 0.93 

No Ct No Ct No Ct 0.92 

No Ct No Ct No Ct 0.82 

No Ct No Ct 36.28 N/A 

 1381 
 1382 
 1383 

 1384 
 1385 
 1386 
 1387 

 1388 

 1389 

 1390 
 1391 

Table S4: Estimated green crab density, µ̂, at sampled sites. Table includes the median and 90% 1392 

credibility interval of the parameter’s posterior distribution. 1393 
 1394 

Site (ID) Region 
median 

µ̂ 

90% Credibility 

Interval 
P(µ̂ > µcritical) 

Chicken Coop 

Creek 
Central Sound 1.7e-8 1.9e-85, 0.0019 0.0028 
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Dungeness Base 

Lagoon 
Central Sound 3.1e-8 4.8e-74, 0.0057 0.017 

Dungeness East 

Lagoon 
Central Sound 3.7e-8 9.6e-91, 0.0062 0.022 

Graveyard Spit 

Channel  
Central Sound 4.9e-4 2.4e-18, 0.0079 5e-4 

Indian Island Central Sound 0.024 1.3e-17, 0.21 0.35 

Jimmycomelately 

Creek 
Central Sound 0.0013 7.7e-17, 0.022 0.017 

KVI Beach South Sound 6.5e-7 2.0e-72, 0.051 0.096 

Rabb's Lagoon South Sound 0.16 4.0e-61, 0.61 0.64 

Titlow South Sound 4.4e-8 4.4e-66, 0.0082 0.032 

John's River 
Washington 

Coast 
0.83 0.54, 1.1 1.0 

Ocean Shores 
Washington 

Coast 
6.1 4.8, 7.7 1.0 

Stackpole 
Washington 

Coast 
3.1 2.4, 3.8 1.0 

Tokeland East 
Washington 

Coast 
2.3 1.3, 3.5 1.0 

Tokeland West 
Washington 

Coast 
3.3 2.4, 4.1 1.0 

Chuckanut Creek Whatcom 6.0e-4 2.6e-17, 0.01 0.0019 

California Creek Whatcom 0.090 0.055, 0.13 0.96 

Dakota Creek Whatcom 0.59 0.46, 0.73 1.0 

Noname Creek Whatcom 9.5e-9 3.4e-69, 0.0012 6e-4 

Pillars Whatcom 0.10 0.076, 0.13 1.0 

Wilsei's Whatcom 0.065 0.0066, 0.14 0.59 

 1395 

 1396 


